mysql三大日志-binlog、redo log和undo log

2022/08/20

mysql 日志主要包括错误日志、查询日志、慢查询日志、事务日志、二进制日志几大类。作为开发,我们重点需要关注的是二进制日志( binlog )和事务日志(包括 redo log 和 undo log )

binlog

binlog 用于记录数据库执行的写入性操作(不包括查询)信息,以二进制的形式保存在磁盘中。

binlog 是 mysql 的逻辑日志,并且由 Server 层进行记录,使用任何存储引擎的 mysql 数据库都会记录 binlog 日志

  • 逻辑日志:可以简单理解为记录的就是sql语句 。
  • 物理日志:mysql 数据最终是保存在数据页中的,物理日志记录的就是数据页变更 。

binlog 是通过追加的方式进行写入的,可以通过 max_binlog_size 参数设置每个 binlog 文件的大小,当文件大小达到给定值之后,会生成新的文件来保存日志。

binlog使用场景

在实际应用中, binlog 的主要使用场景有两个,分别是 主从复制 和 数据恢复 。

  • 主从复制 :在 Master 端开启 binlog ,然后将 binlog 发送到各个 Slave 端, Slave 端重放 binlog 从而达到主从数据一致。
  • 数据恢复 :通过使用 mysql binlog 工具来恢复数据。

binlog刷盘时机

对于 InnoDB 存储引擎而言,只有在事务提交时才会记录 biglog ,此时记录还在内存中,那么biglog 是什么时候刷到磁盘中的呢?

mysql 通过 sync_binlog 参数控制 biglog 的刷盘时机,取值范围是 0-N:

  • 0:不去强制要求,由系统自行判断何时写入磁盘;
  • 1:每次 commit 的时候都要将 binlog 写入磁盘;
  • N:每N个事务,才会将 binlog 写入磁盘。

从上面可以看出, sync_binlog 最安全的是设置是 1 ,这也是 MySQL 5.7.7之后版本的默认值。但是设置一个大一些的值可以提升数据库性能,因此实际情况下也可以将值适当调大,牺牲一定的一致性来获取更好的性能。

binlog日志格式

我们创建一个mysql表

create table rumenz(
	id int,
	name varchar(30)
);

表结构如下

Field Type Null Key Default Extra
id int(11) YES   NULL  
name varchar(30) YES   NULL  

执行以下SQL语句

//插入数据
insert into rumenz(id,name) values(123,"qaz");
//修改数据
update rumenz set id=456 where id=123;
//查看binlog日志
mysqlbinlog --base64-output=AUTO -v -d test /usr/local/var/mysql/binlog.000035

binlog 日志有三种格式,分别为 STATMENT 、 ROW 和 MIXED 。

在 MySQL 5.7.7 之前,默认的格式是 STATEMENT , MySQL 5.7.7 之后,默认值是 ROW。日志格式通过 binlog-format 指定。

查看MySQL用的哪种模式

show global variables like '%binlog_format%';

STATMENT:基于SQL 语句的复制( statement-based replication, SBR),每一条会修改数据的sql语句会记录到 binlog 中

//查看binlog日志
mysqlbinlog --base64-output=AUTO -v -d test /usr/local/var/mysql/binlog.000035
...
update rumenz set id=456 where id=123
...
  • 优点:不需要记录每一行的变化,减少了 binlog 日志量,节约了 IO , 从而提高了性能;
  • 缺点:在某些情况下会导致主从数据不一致,比如执行sysdate() 、 sleep() 等 。

ROW:基于行的复制(row-based replication, RBR),不记录每条sql语句的上下文信息,仅需记录哪条数据被修改了 。

//查看binlog日志
mysqlbinlog --base64-output=AUTO -v -d test /usr/local/var/mysql/binlog.000035
...
### UPDATE `demo`.`rumenz`
### WHERE
###   @1=123
###   @2='qaz'
### SET
###   @1=456
###   @2='qaz'
# at 1096 
...

虽然我们只改了id
字段,但是name
字段的值也被记录到了日志,也就是说在row level
模式下,整行的数据都会被记录到binlog。
  • 优点:不会出现某些特定情况下的存储过程、或function、或trigger的调用和触发无法被正确复制的问题 ;
  • 缺点:会产生大量的日志,尤其是alter table 的时候会让日志暴涨

MIXED:基于STATMENT 和 ROW 两种模式的混合复制( mixed-based replication, MBR ),一般的复制使用 STATEMENT 模式保存 binlog,对于 STATEMENT 模式无法复制的操作使用 ROW 模式保存 binlog

从5.1.8版本开始,MySQL提供了Mixed格式,实际上就是Statement与Row的结合。在Mixed模式下,一般的语句修改使用statment格式保存binlog,如一些函数,statement无法完成主从复制的操作,则采用row格式保存binlog,MySQL会根据执行的每一条具体的sql语句来区分对待记录的日志形式,也就是在Statement和Row之间选择一种。

redo log

为什么需要redo log?

我们都知道,事务的四大特性里面有一个是 持久性 ,具体来说就是

  1. 只要事务提交成功,那么对数据库做的修改就被永久保存下来了,不可能因为任何原因再回到原来的状态 。那么 mysql 是如何保证一致性的呢?最简单的做法是在每次事务提交的时候,将该事务涉及修改的数据页全部刷新到磁盘中。但是这么做会有严重的性能问题,主要体现在两个方面: 因为 Innodb 是以 页 为单位进行磁盘交互的,而一个事务很可能只修改一个数据页里面的几个字节,这个时候将完整的数据页刷到磁盘的话,太浪费资源了!

  2. 一个事务可能涉及修改多个数据页,并且这些数据页在物理上并不连续,使用随机IO写入性能太差! 因此 mysql 设计了 redo log, 具体来说就是只记录事务对数据页做了哪些修改,这样就能完美地解决性能问题了(相对而言文件更小并且是顺序IO)。

redo log基本概念

redo log 包括两部分:一个是内存中的日志缓冲( redo log buffer ),另一个是磁盘上的日志文件( redo log file)。mysql 每执行一条 DML(数据操纵语言,主要insert、update、delete) 语句,先将记录写入 redo log buffer ,后续某个时间点再一次性将多个操作记录写到 redo log file 。这种 先写日志,再写磁盘 的技术就是 MySQL 里经常说到的 WAL(Write-Ahead Logging) 技术。

在计算机操作系统中,用户空间( user space )下的缓冲区数据一般情况下是无法直接写入磁盘的,中间必须经过操作系统内核空间( kernel space )缓冲区( OS Buffer )。因此, redo log buffer 写入 redo log file 实际上是先写入 OS Buffer ,然后再通过系统调用 fsync() 将其刷到 redo log file 中,过程如下:

1

mysql 支持三种将 redo log buffer 写入 redo log file 的时机,可以通过 innodb_flush_log_at_trx_commit 参数配置,各参数值含义如下:

参数值 含义
0(延迟写) 事务提交时不会将 redo log buffer 中日志写入到 os buffer ,而是每秒写入 os buffer 并调用 fsync() 写入到 redo log file 中。也就是说设置为0时是(大约)每秒刷新写入到磁盘中的,当系统崩溃,会丢失1秒钟的数据
1(实时写,实时刷) 事务每次提交都会将 redo log buffer 中的日志写入 os buffer 并调用 fsync() 刷到 redo log file 中。这种方式即使系统崩溃也不会丢失任何数据,但是因为每次提交都写入磁盘,IO的性能较差
2(实时写,延迟刷) 每次提交都仅写入到 os buffer ,然后是每秒调用 fsync() 将 os buffer中的日志写入到 redo log file 。

2

redo log记录形式

前面说过,redo log 实际上记录数据页的变更,而这种变更记录是没必要全部保存,因此 redo log 实现上采用了大小固定,循环写入的方式,当写到结尾时,会回到开头循环写日志。如下图:

3

同时我们很容易得知, 在innodb中,既有redo log 需要刷盘,还有 数据页 也需要刷盘, redo log 存在的意义主要就是降低对 数据页 刷盘的要求 ** 。在上图中, write pos 表示 redo log 当前记录的 LSN (逻辑序列号)位置, check point 表示 数据页更改记录 刷盘后对应 redo log 所处的 LSN (逻辑序列号)位置。write pos 到 check point 之间的部分是 redo log 空着的部分,用于记录新的记录;check point 到 write pos 之间是 redo log 待落盘的数据页更改记录。当 write pos追上 check point时,会先推动 check point 向前移动,空出位置再记录新的日志。

如果write pos赶上check point,则表示redo log已满,因此无法执行新的更新,必须停止并擦除一些数据,将数据同步到磁盘,然后再继续以上步骤。

启动 innodb 的时候,不管上次是正常关闭还是异常关闭,总是会进行恢复操作。因为 redo log记录的是数据页的物理变化,因此恢复的时候速度比逻辑日志(如 binlog )要快很多。重启 innodb 时,首先会检查磁盘中数据页的 LSN ,如果数据页的 LSN 小于日志中的 LSN ,则会从 checkpoint 开始恢复。还有一种情况,在宕机前正处于checkpoint 的刷盘过程,且数据页的刷盘进度超过了日志页的刷盘进度,此时会出现数据页中记录的 LSN 大于日志中的 LSN ,这时超出日志进度的部分将不会重做,因为这本身就表示已经做过的事情,无需再重做。

redo log与binlog区别

  • 文件大小
    • redo log 的大小是固定的。 binlog 可通过配置参数 max_binlog_size 设置每个binlog 文件的大小
  • 实现方式
    • redo log 是 InnoDB 引擎层实现的,并不是所有引擎都有。 binlog 是 Server 层实现的,所有引擎都可以使用binlog日志
  • 记录方式
    • redo log 采用循环写的方式记录,当写到结尾时,会回到开头循环写日志。 binlog通过追加的方式记录,当文件大小大于给定值后,后续的日志会记录到新的文件上
  • 适用场景
    • redo log 适用于崩溃恢复(crash-safe) ;binlog 适用于主从复制和数据恢复

由 binlog 和 redo log 的区别可知:binlog 日志只用于归档,只依靠 binlog 是没有 crash-safe 能力的。但只有 redo log 也不行,因为 redo log 是 InnoDB 特有的,且日志上的记录落盘后会被覆盖掉。因此需要 binlog 和 redo log 二者同时记录,才能保证当数据库发生宕机重启时,数据不会丢失。

为什么 redo log 具有 crash-safe 的能力,是 binlog 无法替代的

redo log 是什么?

一个固定大小,“循环写”的日志文件,记录的是物理日志——“在某个数据页上做了某个修改”。

binlog 是什么?

一个无限大小,“追加写”的日志文件,记录的是逻辑日志——“给 ID=2 这一行的 c 字段加1”。

redo log 和 binlog 有一个很大的区别就是,一个是循环写,一个是追加写。也就是说 redo log 只会记录未刷盘的日志,已经刷入磁盘的数据都会从 redo log 这个有限大小的日志文件里删除。binlog 是追加日志,保存的是全量的日志。

当数据库 crash 后,想要恢复未刷盘但已经写入 redo log 和 binlog 的数据到内存时,binlog 是无法恢复的。虽然 binlog 拥有全量的日志,但没有一个标志让 innoDB 判断哪些数据已经刷盘,哪些数据还没有。

举个栗子,binlog 记录了两条日志:

  1. 给 ID=2 这一行的 c 字段加1
  2. 给 ID=2 这一行的 c 字段加1

在记录1刷盘后,记录2未刷盘时,数据库 crash。重启后,只通过 binlog 数据库无法判断这两条记录哪条已经写入磁盘,哪条没有写入磁盘,不管是两条都恢复至内存,还是都不恢复,对 ID=2 这行数据来说,都不对。

但 redo log 不一样,只要刷入磁盘的数据,都会从 redo log 中抹掉,数据库重启后,直接把 redo log 中的数据都恢复至内存就可以了。这就是为什么 redo log 具有 crash-safe 的能力,而 binlog 不具备。

如何保证redo log与binlog两份日志之间的逻辑一致

由于 redo log 和 binlog 是两个独立的逻辑,如果不用两阶段提交,要么就是先写完 redo log 再写 binlog,或者采用反过来的顺序。可能造成的问题:

update 语句来做例子。假设当前 ID=2 的行,字段 c 的值是 0,再假设执行 update 语句过程中在写完第一个日志后,第二个日志还没有写完期间发生了 crash,会出现什么情况呢?

  1. 先写 redo log 后写 binlog。

假设在 redo log 写完,binlog 还没有写完的时候,MySQL 进程异常重启。由于,redo log 写完之后,系统即使崩溃,仍然能够把数据恢复回来,所以恢复后这一行 c 的值是 1。但是由于 binlog 没写完就 crash 了,这时候 binlog 里面就没有记录这个语句。因此,之后备份日志的时候,存起来的 binlog 里面就没有这条语句。然后你会发现,如果需要用这个 binlog 来恢复临时库的话,由于这个语句的 binlog 丢失,这个临时库就会少了这一次更新,恢复出来的这一行 c 的值就是 0,与原库的值不同。

  1. 先写 binlog 后写 redo log。

如果在 binlog 写完之后 crash,由于 redo log 还没写,崩溃恢复以后这个事务无效,所以这一行 c 的值是 0。但是 binlog 里面已经记录了 “把 c 从 0 改成 1” 这个日志。所以,在之后用 binlog 来恢复的时候就多了一个事务出来,恢复出来的这一行 c 的值就是 1,与原库的值不同。

如果不使用 “两阶段提交”,那么数据库的状态就有可能和用它的日志恢复出来的库的状态不一致

为了解决两份日志之间的逻辑一致问题,InnoDB存储引擎使用两阶段提交方案。

原理很简单,将redo log的写入拆成了两个步骤prepare和commit,这就是两阶段提交

redo log 和 binlog 有一个共同的数据字段,叫 XID。崩溃恢复的时候,会按顺序扫描 redo log:

  • 如果碰到既有 prepare、又有 commit 的 redo log,就直接提交;
  • 如果碰到只有 parepare、而没有 commit 的 redo log,就拿着 XID 去 binlog 找对应的事务

4

使用两阶段提交后,写入binlog时发生异常也不会有影响,因为MySQL根据redo log日志恢复数据时,发现redo log还处于prepare阶段,并且没有对应binlog日志,就会回滚该事务

5

再看一个场景,redo log设置commit阶段发生异常,那会不会回滚事务呢?

6

并不会回滚事务,它会执行上图框住的逻辑,虽然redo log是处于prepare阶段,但是能通过事务id找到对应的binlog日志,所以MySQL认为是完整的,就会提交事务恢复数据

undo log

数据库事务四大特性中有一个是 原子性 ,具体来说就是 原子性是指对数据库的一系列操作,要么全部成功,要么全部失败,不可能出现部分成功的情况 。实际上, 原子性 底层就是通过 undo log 实现的。undo log 主要记录了数据的逻辑变化,比如一条 INSERT 语句,对应一条 DELETE 的 undo log ,对于每个 UPDATE 语句,对应一条相反的 UPDATE 的 undo log ,这样在发生错误时,就能回滚到事务之前的数据状态。同时, undo log 也是 MVCC(多版本并发控制)实现的关键

逻辑格式的日志,在执行 undo 的时候,仅仅是将数据从逻辑上恢复至事务之前的状态,而不是从物理页面上操作实现的,这一点是不同于 redo log 的

Post Directory